Package: MMVBVS 0.8.0

MMVBVS: Missing Multivariate Bayesian Variable Selection

A variable selection tool for multivariate normal variables with missing-at-random values using Bayesian Hierarchical Model. Visualization functions show the posterior distribution of gamma (inclusion variables) and beta (coefficients). Users can also visualize the heatmap of the posterior mean of covariance matrix. Kim, T. Nicolae, D. (2019)<https://github.com/tk382/MMVBVS/blob/master/workingpaper.pdf>. Guan, Y. Stephens, M. (2011)<doi:10.1214/11-AOAS455>.

Authors:Tae Kim

MMVBVS_0.8.0.tar.gz
MMVBVS_0.8.0.zip(r-4.5)MMVBVS_0.8.0.zip(r-4.4)MMVBVS_0.8.0.zip(r-4.3)
MMVBVS_0.8.0.tgz(r-4.4-x86_64)MMVBVS_0.8.0.tgz(r-4.4-arm64)MMVBVS_0.8.0.tgz(r-4.3-x86_64)MMVBVS_0.8.0.tgz(r-4.3-arm64)
MMVBVS_0.8.0.tar.gz(r-4.5-noble)MMVBVS_0.8.0.tar.gz(r-4.4-noble)
MMVBVS_0.8.0.tgz(r-4.4-emscripten)MMVBVS_0.8.0.tgz(r-4.3-emscripten)
MMVBVS.pdf |MMVBVS.html
MMVBVS/json (API)

# Install 'MMVBVS' in R:
install.packages('MMVBVS', repos = c('https://tk382.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tk382/mmvbvs/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

2.70 score 102 downloads 5 exports 35 dependencies

Last updated 5 years agofrom:ec2c5706c2. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64OKNov 04 2024
R-4.5-linux-x86_64OKNov 04 2024
R-4.4-win-x86_64OKNov 04 2024
R-4.4-mac-x86_64OKNov 04 2024
R-4.4-mac-aarch64OKNov 04 2024
R-4.3-win-x86_64OKNov 04 2024
R-4.3-mac-x86_64OKNov 04 2024
R-4.3-mac-aarch64OKNov 04 2024

Exports:beta_distmmvbvsplot_betaplot_gammaplot_sigma

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshapereshape2rlangscalesstringistringrtibbleutf8vctrsviridisLitewithr